The CO 2 storage operation at Sleipner in the Norwegian North Sea provides an excellent demonstration of the application of time-lapse surface seismic methods to CO 2 plume monitoring under favourable conditions. Injection commenced at Sleipner in 1996 with CO 2 separated from natural gas being injected into the Utsira Sand, a major saline aquifer of late Cenozoic age. CO 2 injection is via a near-horizontal well, at a depth of about 1012 m bsl, some 200 m below the reservoir top, at a rate approaching 1 million tonnes (Mt) per year, with more than 11 Mt currently stored.A comprehensive time-lapse surface seismic programme has been carried out, with 3D surveys in 1994, 1999, 2001, 2002, 2004, 2006 and 2008. Key aims of the seismic monitoring are to track plume migration, demonstrate containment within the storage reservoir and provide quantitative information as a means to better understand detailed flow processes controlling development of the plume in the reservoir.The CO 2 plume is imaged as a number of bright sub-horizontal reflections within the reservoir, growing with time ( Figure 1). The reflections mostly comprise tuned wavelets arising from thin (mostly < 8 m thick) layers of CO 2 trapped beneath very thin intra-reservoir mudstones and the reservoir caprock. The plume is roughly 200 m high and elliptical in plan, with a major axis increasing to over 3000 m by 2008. As well as its prominent reflectivity, the plume also produces a large velocity pushdown caused by the seismic waves travelling more slowly through CO 2 -saturated rock than through the virgin aquifer. This paper summarises some of the quantitative methods that have been applied to the Sleipner seismic datasets.