Like other proteins, the natural silk fibroin (SF) extracted from domesticated silkworms can adsorb at the air/water interface and stabilize foam due to its amphiphilic character and surface activity. At the interface, the adsorbed SF molecules experience structural reorganization and form water-insoluble viscoelastic films, which protect foam bubbles from coalescence and rupture. The solution conditions, such as protein concentration, pH, and additives, have significant influences on the molecular adsorption, layer thickness, interfacial mechanical strength, and, thus, on the foaming properties of SF. The understanding of the relationship between the interfacial adsorption, surface viscoelasticity, and foaming properties of SF is very important for the design, preparation, and application of SF foams in different fields.