We prove that all Rota-Baxter operators on a quadratic division algebra are trivial. For nonzero weight, we state that all Rota-Baxter operators on the simple odd-dimensional Jordan algebra of bilinear form are projections on a subalgebra along another one. For weight zero, we find a connection between the Rota-Baxter operators and the solutions to the alternative Yang-Baxter equation on the Cayley-Dickson algebra. We also investigate the Rota-Baxter operators on the matrix algebras of order two, the Grassmann algebra of plane, and the Kaplansky superalgebra.Mathematics Subject Classification. 16T25, 17A45, 17C50.