2016
DOI: 10.4134/ckms.2016.31.2.247
|View full text |Cite
|
Sign up to set email alerts
|

Jordan Higher Derivations on Trivial Extension Algebras

Abstract: Abstract. We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher deriva… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 12 publications
0
2
0
Order By: Relevance
“…Many authors have studied the problem for various algebras; see [5,6,7,8,15,16,17,21,22,23] and references therein.…”
mentioning
confidence: 99%
“…Many authors have studied the problem for various algebras; see [5,6,7,8,15,16,17,21,22,23] and references therein.…”
mentioning
confidence: 99%
“…R. Ebrahimi Vishki et al conjectured in [1] that if every Jordan higher derivation on a trivial generalized matrix algebra G = (A, M, N, B) is a higher derivation, then either M = 0 or N = 0. In this note, we will give a class of counter examples.…”
Section: Introductionmentioning
confidence: 99%