Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Allelopathy is a phenomenon by which plants positively or negatively affect neighboring plants by releasing allelopathic compounds. These allelochemicals are secondary metabolites found in different concentrations in shoots, roots, leaves, flowers, and even pollen grains. Allelochemicals have potential as natural bioherbicides for controlling weeds when applied in the form of extracts or through intercropping, cover cropping, and mulching. The present study was conducted to investigate the allelopathic potential of Ficus nitida leaves against Echinochloa crus-galli L. and Corchorus olitorius L weeds associated with sunflower plant via two application methods (mixing of F. nitida leaf powder with soil and foliar spray of F. nitida leaf powder alcoholic extract). Two pot experiments were carried out for the two summer seasons of 2020 and 2021 in the greenhouse of the National Research Centre (NRC), Dokki, Giza, Egypt. Nine treatments were applied in a completely randomized block design. Three treatments were applied before sowing, namely F. nitida leaf powder was mixed with the soil at rates of 15, 30, and 45 g/pot. The other three treatments of alcoholic leaf powder extract of F. nitida were sprayed twice on both plants and weeds at 10, 20, and 30% (w/v) concentrations. Additionally, three check treatments—healthy (sunflower only), unweeded, and both weeds only—were applied for comparison. The recorded results showed that F. nitida had an allelopathic bioherbicidal effect on both weeds. By increasing the concentration of F. nitida extract, the bioherbicidal potential increased. Moreover, the recorded results showed that foliar spray of alcoholic extract at 30% concentration was the superior application method for controlling weeds. Mixing of F. nitida leaf powder at 45 g/pot ranked second after this superior treatment. A noticeable result is that these two superior treatments improved sunflower growth parameters and yield traits. Quantitative estimation of phenolic compounds and flavonoids demonstrated that the concentration of these allelochemicals is higher in alcoholic extract than in water extract. Moreover, phenolic acid concentrations as detected by high-performance liquid chromatography fractionation are higher in alcoholic extract than in water extract.
Allelopathy is a phenomenon by which plants positively or negatively affect neighboring plants by releasing allelopathic compounds. These allelochemicals are secondary metabolites found in different concentrations in shoots, roots, leaves, flowers, and even pollen grains. Allelochemicals have potential as natural bioherbicides for controlling weeds when applied in the form of extracts or through intercropping, cover cropping, and mulching. The present study was conducted to investigate the allelopathic potential of Ficus nitida leaves against Echinochloa crus-galli L. and Corchorus olitorius L weeds associated with sunflower plant via two application methods (mixing of F. nitida leaf powder with soil and foliar spray of F. nitida leaf powder alcoholic extract). Two pot experiments were carried out for the two summer seasons of 2020 and 2021 in the greenhouse of the National Research Centre (NRC), Dokki, Giza, Egypt. Nine treatments were applied in a completely randomized block design. Three treatments were applied before sowing, namely F. nitida leaf powder was mixed with the soil at rates of 15, 30, and 45 g/pot. The other three treatments of alcoholic leaf powder extract of F. nitida were sprayed twice on both plants and weeds at 10, 20, and 30% (w/v) concentrations. Additionally, three check treatments—healthy (sunflower only), unweeded, and both weeds only—were applied for comparison. The recorded results showed that F. nitida had an allelopathic bioherbicidal effect on both weeds. By increasing the concentration of F. nitida extract, the bioherbicidal potential increased. Moreover, the recorded results showed that foliar spray of alcoholic extract at 30% concentration was the superior application method for controlling weeds. Mixing of F. nitida leaf powder at 45 g/pot ranked second after this superior treatment. A noticeable result is that these two superior treatments improved sunflower growth parameters and yield traits. Quantitative estimation of phenolic compounds and flavonoids demonstrated that the concentration of these allelochemicals is higher in alcoholic extract than in water extract. Moreover, phenolic acid concentrations as detected by high-performance liquid chromatography fractionation are higher in alcoholic extract than in water extract.
Till now, there is no complete program that could be implemented to eradicate the parasitic weeds such as broomrape because of their complex life cycle. Therefore, the current research aimed to find new and safe agricultural practices to solve, partially at least, the issues of broomrape in faba bean fields. The experiment was conducted for two winter seasons of 2018/2019 and 2019/2020 in naturally infested field with broomrape. Treatments involved application of mycorrhiza, charcoal and rocket salad powder, glyphosate–isopropylammonium herbicide, and weedy check applied whether with sole planting of faba bean and interplanting with flax. The experiment was designed in a strip plot based on completely randomized block arrangement with six replicates. Broomrape number and weight, infested faba bean plants, faba bean agronomic traits, and seed nutrient uptake were estimated. In both seasons, glyphosate whether with sole or interplanting patterns recorded the lowest values of broomrape number plot‒1 and broomrape weight plot‒1 without significant variation with charcoal and rocket salad applied in interplanted plots. The maximum increases in faba bean seed yield were observed with application of charcoal × sole or interplanting pattern and rocket salad × interplanting pattern in the 2018/2019 season as well as charcoal, mycorrhiza, and rocket salad with sole pattern in the 2019/2020 season. Charcoal, mycorrhiza, and rocket salad were effective practices whether under sole or interplanting patterns for improving nutrient uptake, especially in the first season. In the second season, rocket salad with sole or interplanting pattern was the stable interaction for enhancing all nutrient uptake. Reducing broomrape hazards expressed in low number and weight with less infested faba bean plants was confined by application of mycorrhiza, charcoal, and rocket salad powder whether with sole planting of faba bean and interplanting with flax. Hence, faba bean farmers are advised to apply such promising safe practices for sustaining faba bean cultivation in lands infested by broomrape.
The intensive and repeated use of chemical herbicides has led to the emergence of herbicide-resistant weeds, which, in addition to their environmental impacts, also pose significant threats to human and animal health. This study aimed to explore the potential of oilseed industrial wastes, specifically soybean and flaxseed meals, as safe and environmentally friendly bioherbicides for controlling weeds associated with onion crops. Two field experiments were conducted along two successive winter of 2020/21 and 2021/22. Treatments involved foliar spray of soybean and flaxseed meals in three different concentrations (15, 30 and 45%), mulching of seed meals, oxyfluorfen herbicide, two hand hoeing and untreated weedy check. The findings demonstrated that all weed control treatments significantly reduced weed density, biomass and nutrient uptake. Two hand hoeing, oxyfluorfen herbicide and the mulching of soybean and flaxseed meals alternated in the top rank for weed control, showing minimal significant differences among them. Following these effective treatments, soybean meal extracts at 45 and 30% exhibited notable weed control compared to the weedy check. The greatest enhancement in onion growth, yield characteristics and bulb quality was observed with the application of hand hoeing, soybean and flaxseed meal mulching treatments, with no significant differences between them. High-Performance Liquid Chromatography (HPLC) fractionation of both meals identified various phenolic acids at different concentrations. Practically, these safe efficient treatments proved progress on chemical herbicide. Hence, onion farmers are advised to apply soybean and flaxseed meals mulching safe treatments as alternative to harmful chemical herbicides under all experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.