Chilli leaf curl virus (ChiLCV), (Genus Begomovirus, family Geminiviridae) and associated satellites pose a serious threat to chilli production, worldwide. This study highlights the factors accountable for genetic diversity, recombination, and evolution of ChiLCV, and associated chilli leaf curl alphasatellite (ChiLCA) and chilli leaf curl betasatellite (ChiLCB). Phylogenetic analysis of complete genome (DNA-A) sequences of 132 ChiLCV isolates from five countries downloaded from NCBI database clustered into three major clades and showed high population diversity. The dN/dS ratio and Tajima D value of all viral DNA-A and associated betasatellite showed selective control on evolutionary relationships. Negative values of neutrality tests indicated purified selection and an excess of low-frequency polymorphism. Nucleotide diversity (π) for C4 and Rep genes was higher than other genes of ChiLCV with an average value of π = 18.37 × 10−2 and π = 17.52 × 10−2 respectively. A high number of mutations were detected in TrAP and Rep genes, while ChiLCB has a greater number of mutations than ChiLCA. In addition, significant recombination breakpoints were detected in all regions of ChiLCV genome, ChiLCB and, ChiLCA. Our findings indicate that ChiLCV has the potential for rapid evolution and adaptation to a range of geographic conditions and could be adopted to infect a wide range of crops, including diverse chilli cultivars.