Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
In terms of sustainability, traffic is currently a significant challenge for urban areas, where the pollution, congestion and accidents are negative externalities which have strongly impacted the health and economy of cities. The increasing use of private vehicles has further exacerbated these problems. In this context, the development of new strategies and policies for sustainable urban transport has made transport planning more relevant than ever before. Mathematical models have helped greatly in identifying solutions, as well as in enriching the process of making decisions and planning. In particular, dynamic network models provide a means for representing dynamic traffic behavior; in other words, they provide a temporally coherent means for measuring the interactions between travel decisions, traffic flows, travel time and travel cost. This thesis focuses on dynamic traffic assignment (DTA) models. DTA has been studied extensively for decades, but much more so in the last twenty years since the emergence of Intelligent Transport Systems (ITS). The objective of this research is to study and analyze the prospects for improving this problem. In an operational context, the objective of DTA models is to represent the evolution of traffic on a road network as conditions change. They seek to describe the assignment of the demand on different paths which connect every OD pair in a state of equilibrium. The behaviour following each individual decision during a trip is a time-dependent generalization of Wardrop's First Principle, the Dynamic User Equilibrium (DUE). This hypothesis is based on the following idea: When current travel times are equal and minimal for vehicles that depart within the same time interval , the dynamic traffic flow through the network is in a DUE state based on travel times for each OD pair at each instant of time ([ran-1996]). This work begins with the time-continuous variational inequalities model proposed by [friesz-1993] for solving the DUE problem. Different solutions can be used on the proposed DUE formulation. On the one hand, there are the so-called analytical approaches which use known mathematical optimization techniques for solving the problem directly. On the other hand, there are simulation-based formulations that approximate heuristic solutions at a reasonable computational cost. While analytical models concentrate mainly on deriving theoretical insights, simulation-based models focus on trying to build practical models for deployment in real networks. Thus, because the simulation-based formulation holds the most promise, we work on that approach in this thesis. In the field of simulation-based DTA models, significant progress has been made by many researchers in recent decades. Our simulation-based formulation separates the proposed iterative process into two main components: - A method for determining the new time dependent path flows by using the travel times on these paths experienced in the previous iteration. - A dynamic network loading (DNL) method, which determines how these paths flow propagate along the corresponding paths. However, it is important to note that not all computer implementations based on this algorithmic framework provide solutions that obtain DUE. Therefore, while we analyze both proposals in this thesis we focus on the preventive methods of flow reassignment because only those can guarantee DUE solutions. Our proposed simulation-based DTA method requires a DNL component that can reproduce different vehicle classes, traffic light controls and lane changes. Therefore, this thesis develops a new multilane multiclass mesoscopic simulation model with these characteristics, which is embedded into the proposed DUE framework. Finally, the developed mesoscopic simulation-based DTA approach is validated accordingly. The results obtained from the computational experiments demonstrate that the developed methods perform well. En los últimos tiempos, el problema del tráfi co urbano ha situado a las áreas metropolitanas en una difícil situación en cuanto a sostenibilidad se refi ere (en términos de la congestión, los accidentes y la contaminación). Este problema se ha visto acentuado por la creciente movilidad promovida por el aumento del uso del vehículo privado. Además, debido a que la mayor parte del trá fico es canalizada a través de los modos de carretera, el tiempo perdido por los usuarios al realizar sus viajes tiene un importante efecto económico sobre las ciudades. En este contexto, la plani cación de transporte se vuelve relevante a través del desarrollo de nuevas estrategias y políticas para conseguir un transporte urbano sostenible. Los modelos matemáticos son de gran ayuda ya que enriquecen las decisiones de los gestores de trá fico en el proceso de plani ficación. En particular podemos considerar los modelos de trá fico para la predicción, como por ejemplo los modelos de asignación dinámica de tráfi co (ADT), los cuales proveen de una representación temporal coherente de las interacciones entre elecciones de trá fico, fl ujos de trá fico y medidas de tiempo y coste. Esta tesis se centra en los modelos ADT. Durante las últimas décadas, los modelos ADT han sido intensamente estudiados. Este proceso se ha acelerado particularmente en los últimos veinte años debido a la aparición de los Sistemas Inteligentes de Transporte. El objetivo de esta investigación es estudiar y analizar diferentes posibilidades de mejorar la resolución del problema. En un contexto operacional, el objetivo de los modelos ADT es representar la evolución de la red urbana cuando las condiciones de trá fico cambian. Estos modelos tratan de describir la asignación de la demanda en los diferentes caminos que conectan los pares OD siguiendo un estado de equilibrio. En este caso se ha considerado que el comportamiento de los conductores en cada una de sus decisiones individuales tomadas durante el viaje es una generalización dependiente del tiempo del Primer Principio de Wardrop, denominada Equilibrio Dinámico de Usuario (EDU). Esta hipótesis se basa en la siguiente idea: para cada par OD para cada instante de tiempo, si los tiempos de viaje de todos los usuarios que han partido en ese intervalo de tiempo son iguales y mínimos, entonces el ujo dinámico de trá fico en la red se encuentra en un estado de EDU basado en los tiempos de viaje (Ran and Boyce (1996)). El presente trabajo toma como punto de partida el modelo de inecuaciones variacionales continuo en el tiempo propuesto por Friesz et al. (1993) para resolver el problema de equilibrio dinámico de usuario. Por un lado, se encuentran los denominados enfoques analíticos que utilizan técnicas matemáticas de optimización para resolver el problema directamente. Por otro lado, están los modelos cuyas formulaciones están basadas en simulación que aproximan soluciones heurísticas con un coste computacional razonable. Mientras que modelos analíticos se concentran principalmente en demostrar las propiedades teóricas, los modelos basados en simulación se centran en intentar construir modelos que sean prácticos para su utilización en redes reales. Así pues, debido a que las formulaciones basadas en simulación son las que se muestran más prometedoras a la práctica, en esta tesis se ha elegido este enfoque para tratar el problema ADT. En los últimos tiempos, el campo de los modelos ADT basados en simulación ha sido de especial interés. Nuestra formulación basada en simulación consiste en un proceso iterativo que consta de dos componentes principales, sistematizadas por Florian et al. (2001) como sigue: Un método para determinar los nuevos ujos (dependientes del tiempo) en los caminos utilizando los tiempos de viaje experimentados en esos caminos en la iteración previa. Un procedimiento de carga dinámica de la red (CDR) que determine cómo esos fl ujos se propagan a través de sus correspondientes caminos. Los algoritmos de reasignación de flujo pueden ser agrupados en dos categorías: preventivos y reactivos. Es importante notar aquí que no todas las implementaciones computacionales basadas en el marco algorítmico propuesto proporcionan una solución EDU. Por lo tanto, aunque en esta tesis analizamos ambas propuestas, nos centraremos en los métodos preventivos de reasignación de flujo porque son los que nos garantizan alcanzar la hipótesis considerada (EDU). Además, nuestro modelo ADT basado en simulación requiere de una componente de CDR que pueda reproducir diferentes clases de vehículos, controles semafóricos y cambios de carril. Así, uno de los objetivos de esta tesis es desarrollar un nuevo modelo de simulación de trá fico con dichas características (multiclase y multicarril), teniendo en cuenta que será una de las componentes principales del marco ADT propuesto.
In terms of sustainability, traffic is currently a significant challenge for urban areas, where the pollution, congestion and accidents are negative externalities which have strongly impacted the health and economy of cities. The increasing use of private vehicles has further exacerbated these problems. In this context, the development of new strategies and policies for sustainable urban transport has made transport planning more relevant than ever before. Mathematical models have helped greatly in identifying solutions, as well as in enriching the process of making decisions and planning. In particular, dynamic network models provide a means for representing dynamic traffic behavior; in other words, they provide a temporally coherent means for measuring the interactions between travel decisions, traffic flows, travel time and travel cost. This thesis focuses on dynamic traffic assignment (DTA) models. DTA has been studied extensively for decades, but much more so in the last twenty years since the emergence of Intelligent Transport Systems (ITS). The objective of this research is to study and analyze the prospects for improving this problem. In an operational context, the objective of DTA models is to represent the evolution of traffic on a road network as conditions change. They seek to describe the assignment of the demand on different paths which connect every OD pair in a state of equilibrium. The behaviour following each individual decision during a trip is a time-dependent generalization of Wardrop's First Principle, the Dynamic User Equilibrium (DUE). This hypothesis is based on the following idea: When current travel times are equal and minimal for vehicles that depart within the same time interval , the dynamic traffic flow through the network is in a DUE state based on travel times for each OD pair at each instant of time ([ran-1996]). This work begins with the time-continuous variational inequalities model proposed by [friesz-1993] for solving the DUE problem. Different solutions can be used on the proposed DUE formulation. On the one hand, there are the so-called analytical approaches which use known mathematical optimization techniques for solving the problem directly. On the other hand, there are simulation-based formulations that approximate heuristic solutions at a reasonable computational cost. While analytical models concentrate mainly on deriving theoretical insights, simulation-based models focus on trying to build practical models for deployment in real networks. Thus, because the simulation-based formulation holds the most promise, we work on that approach in this thesis. In the field of simulation-based DTA models, significant progress has been made by many researchers in recent decades. Our simulation-based formulation separates the proposed iterative process into two main components: - A method for determining the new time dependent path flows by using the travel times on these paths experienced in the previous iteration. - A dynamic network loading (DNL) method, which determines how these paths flow propagate along the corresponding paths. However, it is important to note that not all computer implementations based on this algorithmic framework provide solutions that obtain DUE. Therefore, while we analyze both proposals in this thesis we focus on the preventive methods of flow reassignment because only those can guarantee DUE solutions. Our proposed simulation-based DTA method requires a DNL component that can reproduce different vehicle classes, traffic light controls and lane changes. Therefore, this thesis develops a new multilane multiclass mesoscopic simulation model with these characteristics, which is embedded into the proposed DUE framework. Finally, the developed mesoscopic simulation-based DTA approach is validated accordingly. The results obtained from the computational experiments demonstrate that the developed methods perform well. En los últimos tiempos, el problema del tráfi co urbano ha situado a las áreas metropolitanas en una difícil situación en cuanto a sostenibilidad se refi ere (en términos de la congestión, los accidentes y la contaminación). Este problema se ha visto acentuado por la creciente movilidad promovida por el aumento del uso del vehículo privado. Además, debido a que la mayor parte del trá fico es canalizada a través de los modos de carretera, el tiempo perdido por los usuarios al realizar sus viajes tiene un importante efecto económico sobre las ciudades. En este contexto, la plani cación de transporte se vuelve relevante a través del desarrollo de nuevas estrategias y políticas para conseguir un transporte urbano sostenible. Los modelos matemáticos son de gran ayuda ya que enriquecen las decisiones de los gestores de trá fico en el proceso de plani ficación. En particular podemos considerar los modelos de trá fico para la predicción, como por ejemplo los modelos de asignación dinámica de tráfi co (ADT), los cuales proveen de una representación temporal coherente de las interacciones entre elecciones de trá fico, fl ujos de trá fico y medidas de tiempo y coste. Esta tesis se centra en los modelos ADT. Durante las últimas décadas, los modelos ADT han sido intensamente estudiados. Este proceso se ha acelerado particularmente en los últimos veinte años debido a la aparición de los Sistemas Inteligentes de Transporte. El objetivo de esta investigación es estudiar y analizar diferentes posibilidades de mejorar la resolución del problema. En un contexto operacional, el objetivo de los modelos ADT es representar la evolución de la red urbana cuando las condiciones de trá fico cambian. Estos modelos tratan de describir la asignación de la demanda en los diferentes caminos que conectan los pares OD siguiendo un estado de equilibrio. En este caso se ha considerado que el comportamiento de los conductores en cada una de sus decisiones individuales tomadas durante el viaje es una generalización dependiente del tiempo del Primer Principio de Wardrop, denominada Equilibrio Dinámico de Usuario (EDU). Esta hipótesis se basa en la siguiente idea: para cada par OD para cada instante de tiempo, si los tiempos de viaje de todos los usuarios que han partido en ese intervalo de tiempo son iguales y mínimos, entonces el ujo dinámico de trá fico en la red se encuentra en un estado de EDU basado en los tiempos de viaje (Ran and Boyce (1996)). El presente trabajo toma como punto de partida el modelo de inecuaciones variacionales continuo en el tiempo propuesto por Friesz et al. (1993) para resolver el problema de equilibrio dinámico de usuario. Por un lado, se encuentran los denominados enfoques analíticos que utilizan técnicas matemáticas de optimización para resolver el problema directamente. Por otro lado, están los modelos cuyas formulaciones están basadas en simulación que aproximan soluciones heurísticas con un coste computacional razonable. Mientras que modelos analíticos se concentran principalmente en demostrar las propiedades teóricas, los modelos basados en simulación se centran en intentar construir modelos que sean prácticos para su utilización en redes reales. Así pues, debido a que las formulaciones basadas en simulación son las que se muestran más prometedoras a la práctica, en esta tesis se ha elegido este enfoque para tratar el problema ADT. En los últimos tiempos, el campo de los modelos ADT basados en simulación ha sido de especial interés. Nuestra formulación basada en simulación consiste en un proceso iterativo que consta de dos componentes principales, sistematizadas por Florian et al. (2001) como sigue: Un método para determinar los nuevos ujos (dependientes del tiempo) en los caminos utilizando los tiempos de viaje experimentados en esos caminos en la iteración previa. Un procedimiento de carga dinámica de la red (CDR) que determine cómo esos fl ujos se propagan a través de sus correspondientes caminos. Los algoritmos de reasignación de flujo pueden ser agrupados en dos categorías: preventivos y reactivos. Es importante notar aquí que no todas las implementaciones computacionales basadas en el marco algorítmico propuesto proporcionan una solución EDU. Por lo tanto, aunque en esta tesis analizamos ambas propuestas, nos centraremos en los métodos preventivos de reasignación de flujo porque son los que nos garantizan alcanzar la hipótesis considerada (EDU). Además, nuestro modelo ADT basado en simulación requiere de una componente de CDR que pueda reproducir diferentes clases de vehículos, controles semafóricos y cambios de carril. Así, uno de los objetivos de esta tesis es desarrollar un nuevo modelo de simulación de trá fico con dichas características (multiclase y multicarril), teniendo en cuenta que será una de las componentes principales del marco ADT propuesto.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.