To find a common approach for the development of an efficient system that is able to achieve an omnidirectional jump, a jumping kinematic of a legged robot is proposed based on the behavior mechanism of a jumping spider. To satisfy the diversity of motion forms in robot jumping, a kind of 4 degrees of freedom (4DoFs) mechanical leg is designed. Taking the change of joint angle as inspiration by observing the behavior of the jumping spider during the acceleration phase, a redundant constraint to solve the kinematic is obtained. A series of experiments on three types of jumping-vertical jumping, sideways jumping and forward jumping-is carried out, while the initial attitude and path planning of the robot is studied. The proposed jumping kinematic is verified on the legged robot experimental platform, and the added redundant constraint could be verified as being reasonable. The results indicate that the jumping robot could maintain stability and complete the planned task of jumping, and the proposed spider-inspired jumping strategy could easily achieve an omnidirectional jump, thus enabling the robot to avoid obstacles.