The effect of brain extract from females of freshly emerged Tenebrio molitor on ovary, oocyte development, total protein content of hemolymph, and ovary was studied in 4-day-old adult mealworm females. Injections of extracts of 2-brain equivalents into intact (unligatured) Tenebrio females did not affect ovarian and oocyte development. Injections of ligated females, however, with 2-brain equivalents on day 1 and 2 after adult emergence strongly inhibited ovarian growth and oocyte development. At day 4, ligated and injected females did not develop their ovaries and pre-vitellogenic oocytes were not found. The changes in ovarian development correlated with an increase in the concentration of soluble proteins in the hemolymph as compared with the saline-injected controls. Additionally, a strong reduction of total protein content in ovarian tissue was observed. Reverse phase HPLC separation of a methanolic brain extract of T. molitor females showed that fraction 5 has a similar retention time to synthetic cockroach allatostatin. Fraction 5 was eluted at 12.88 min, which was closest to the internal standard Dippu-AST I, which eluted at 12.77 min. An ELISA of fraction 5 from the methanolic brain extract using antibodies against allatostatins Grybi-AST A1 and Grybi-AST B1 from cricket Gryllus bimaculatus showed that fraction 5 cross-reacted with Grybi-AST A1 antibodies. The cross-reactivity was similar to the synthetic allatostatin from D. punctata, which was used as a positive control. These observations demonstrate a possible role for allatostatin-like brain factor(s) in regulating the reproductive cycle of Tenebrio molitor.