K-means Nonhierarchical Cluster and Dbscan Outlier Detection In the Grouping of Stock Issuers
Atiek Iriany,
Henida Ratna Ayu Putri,
Harry Maringan Tua
Abstract:Group analysis aims to group objects based on similar characteristics so that they are in one group homogeneous and between groups heterogeneous. Study this aim group issuer share in Indonesia based on volatility, liquidity, and market capital. This study uses the non-hierarchical K-Means Clustering method, because the number of samples is big and the number of groups are known. The K-Means Clustering grouping method produces as many as 6 groups with different characteristics. 2. Group 1 consists of stock issu… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.