Abstract:We study the holomorphic Euler characteristics of tautological sheaves on Hilbert schemes of points on surfaces. In particular, we establish the rationality of K-theoretic descendent series. Our approach is to control equivariant holomorphic Euler characteristics over the Hilbert scheme of points on the affine plane. To do so, we slightly modify a Macdonald polynomial identity of Mellit.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.