We associate to each Temperley–Lieb–Jones C*-tensor category $${\mathcal {T}}{\mathcal {L}}{\mathcal {J}}(\delta )$$
T
L
J
(
δ
)
with parameter $$\delta $$
δ
in the discrete range $$\{2\cos (\pi /(k+2)):\,k=1,2,\ldots \}\cup \{2\}$$
{
2
cos
(
π
/
(
k
+
2
)
)
:
k
=
1
,
2
,
…
}
∪
{
2
}
a certain C*-algebra $${\mathcal {B}}$$
B
of compact operators. We use the unitary braiding on $${\mathcal {T}}{\mathcal {L}}{\mathcal {J}}(\delta )$$
T
L
J
(
δ
)
to equip the category $$\mathrm {Mod}_{{\mathcal {B}}}$$
Mod
B
of (right) Hilbert $${\mathcal {B}}$$
B
-modules with the structure of a braided C*-tensor category. We show that $${\mathcal {T}}{\mathcal {L}}{\mathcal {J}}(\delta )$$
T
L
J
(
δ
)
is equivalent, as a braided C*-tensor category, to the full subcategory $$\mathrm {Mod}_{{\mathcal {B}}}^f$$
Mod
B
f
of $$\mathrm {Mod}_{{\mathcal {B}}}$$
Mod
B
whose objects are those modules which admit a finite orthonormal basis. Finally, we indicate how these considerations generalize to arbitrary finitely generated rigid braided C*-tensor categories.