Platelet-activating factor (PAF) is a pro-inflammatory lipid mediator that increases vascular permeability by simultaneous activation of two pathways, one dependent on the cyclooxygenase metabolite prostaglandin E 2 and the other on the sphingomyelinase metabolite ceramide. The hypothesis that part of the PAF-induced oedema is mediated via the inositol 1,4,5-trisphosphate (IP 3 ) pathway or Rho kinase pathway was investigated.Oedema formation was induced in isolated perfused rat lungs by injection of 5 nmol PAF into the pulmonary artery. Lungs were pre-treated with specific inhibitors: edelfosine (L108) to block phosphatidyl-inositol-specific phospholipase C, xestospongin to block the IP 3 receptor, 5-iodonaphthalene-1-sulphonyl-homopiperazine (ML-7) to block myosin light chain kinase, and (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide (Y27632) to block Rho-associated protein kinase.Pre-treatment with L108 or xestospongin reduced PAF-induced oedema formation by 58 and 56%, respectively. The effect of L108 was additive to that of the cyclooxygenase inhibitor acetyl salicylic acid (88% oedema reduction). PAF-induced oedema formation was also reduced if extracellular calcium concentrations were lowered. Furthermore, treatment with ML-7 reduced oedema formation by 54%, whereas Y27632 was without effect.It is concluded that platelet-activating-factor-triggered oedema is mediated by activation of the inositol 1,4,5-trisphosphate pathway, influx of extracellular calcium and subsequent activation of a myosin light chain kinase-dependent and Rho-associated-protein-kinase-independent mechanism.