2021
DOI: 10.48550/arxiv.2111.03787
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

K3 Surfaces, Picard Numbers and Siegel Disks

Abstract: If a K3 surface admits an automorphism with a Siegel disk, then its Picard number is an even integer between 0 and 18. Conversely, using the method of hypergeometric groups, we are able to construct K3 surface automorphisms with Siegel disks that realize all possible Picard numbers. The constructions involve extensive computer searches for appropriate Salem numbers and computations of algebraic numbers arising from holomorphic Lefschetz-type formulas and related Grothendieck residues.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?