We study the twistor spaces of oriented Riemannian 4-manifolds as a source of almost Hermitian 6-manifolds of constant or strictly positive holomorphic, Hermitian and orthogonal bisectional curvatures. In particular, we obtain explicit formulas for these curvatures in the case when the base manifold is Einstein and self-dual, and observe that the "squashed" metric on CP 3 is a non-Kähler Hermitian-Einstein metric of positive holomorphic bisectional curvature. This shows that a recent result of Kalafat and Koca [M. Kalafat and C. Koca, Einstein-Hermitian 4-manifolds of positive bisectional curvature, preprint (2012), arXiv: 1206.3941v1 [math.DG]] in dimension four cannot be extended to higher dimensions. We prove that the Hermitian bisectional curvature of a non-Kähler Hermitian manifold is never a nonzero constant which gives a partial negative answer to a question of Balas and Gauduchon [A. Balas and P. Gauduchon, Any Hermitian metric of constant non-positive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler, Math. Z. 190 (1985) 39-43]. Finally, motivated by an integrability result of Vezzoni [L. Vezzoni, On the Hermitian curvature of symplectic manifolds, Adv. Geom. 7 (2007) 207-214] for almost Kähler manifolds, we study the problem when the holomorphic and the Hermitian bisectional curvatures of an almost Hermitian manifold coincide. We extend the result of Vezzoni to a more general class of almost Hermitian manifolds and describe the twistor spaces having this curvature property.