Cellular communication is a concept that can be explained as the transfer of signals or material (such as cytokines, ions, small molecules) between cells from the same or different type, across either short or long distances. Once this signal or material is received, it will, as a rule, promote a functional effect. Several routes, involved in this transfer, are well described and are of global importance for organ/tissue communication in an organism. The brain interacts dynamically with the immune system, and the main route known to mediate this communication, is via the release of cytokines (by peripheral blood cells), which can then activate certain brain cell types, such as microglia, directly, or activate the vagus nerve transferring signals to neuronal populations in the brain. The communication between these two systems plays a key role in the pathophysiology of neurodegenerative diseases, and the mechanisms involved in this interaction are of central importance for understanding disease initiation and progression and search for therapeutic models. The Momma lab previously addressed the mechanisms of interaction between the peripheral immune system and the brain by investigating cellular fusion of haematopoietic cells with neurons after inflammation. They addressed the question of whether this phenomenon also occurs under non-invasive conditions. To approach this problem, a genetic tracing model that relies on the Cre-Lox recombination system was used. Transgenic mice expressing Cre recombinase specifically in the haematopoietic lineage were crossed into a Cre-reporter background, thus all haematopoietic cells irreversibly express the reporter marker-gene EYFP. Using this model, EYFP was detected in non-haematopoietic tissues, suggesting the existence of a communication mechanism never described before. As cells containing two nuclei were never detected, fusion as a mechanism was excluded, suggesting that Cre reaches non-haematopoietic cells via a different signalling pathway. The Momma lab investigated whether the transfer of material through extracellular vesicles (EVs) could be behind this periphery-to-brain communication. Using the genetic mouse model, they were able to trace the transfer of Cre RNA via EVs between cells in vivo, generating the first in vivo evidence of functional RNA transfer by EVs between blood and brain. The last decade has witnessed a rapid expansion of the field of EVs. Initially considered as waste disposal material, recent evidence has challenged this view. EVs are currently considered as a widespread intercellular communication system that can transport and transfer all types of biomolecules, from nucleic acids to lipids and proteins. However, several important questions are still under investigation. One of them is whether EVs are involved in brain pathophysiology, as inflammation plays an important role in onset and progression of neurodegenerative diseases and is well described in Parkinson Disease (PD). Based on preliminary data in a mouse, peripherally injected with a low dose of Lipopolysaccharide (LPS, an endotoxin found in the outer-membrane of Gram-negative bacteria, which causes an immune response), neurons and other cell population in the brain take up EVs from the periphery. Particularly, dopaminergic neurons from Substantia Nigra and Ventral Tegmental Area have been shown to receive functional RNA, transported through EVs, which can lead up to 20% of recombination. Furthermore, different neuronal populations from Hippocampus, Cortex and Cerebellum exhibit recombination, indicating a widespread signalling from blood to the brain. Therefore, the goal of my PhD thesis was to investigate the mechanisms of this transfer and the triggers that lead to EV uptake by neural cells in vivo both in pathological and physiological conditions. In this project, the extent and function of EV-mediated signalling from blood to brain is explored in the context of peripheral inflammation and neurodegenerative diseases. Firstly, EVs isolated from WT mice were further characterized using size-exclusion chromatography (SEC), Western Blot (WB) and electron microscopy in order to extend the knowledge from previous work done in the Momma lab. Secondly, to expand on the biological relevance of the fact that inflammation is correlated with an increase in EV uptake, different approaches using the genetic murine tracing model were used. Recombination events from haematopoietic cells to the brain have been followed after peripheral injection of LPS. Peripheral inflammation caused by LPS injection led to widespread recombination events in the brain, specifically in microglia and neurons, including dopaminergic (DA) neurons. In contrast, astrocytes, oligodendrocytes and endothelial cells were never or very rarely recombined. Additionally, peripheral LPS injection in a murine model, where Cre is expressed only in erythrocytes, led to recombination events only in microglia, suggesting that the type of EV-secreting cell plays a role in the targeting of EVs to a specific cell population.