Abstract:Let $G=(V(G),E(G))$ is a graph connected non-trivial. \textit{Rainbow connection} is edge coloring on the graph defined as $f:E(G)\rightarrow \{1,2,...,r|r \in N\}$, for every two distinct vertices in $G$ have at least one \textit{rainbow path}. The graph $G$ says \textit{rainbow connected} if every two vertices are different in $G$ associated with \textit{rainbow path}. A path $u-v$ in $G$ says \textit{rainbow path} if there are no two edges in the trajectory of the same color. The edge coloring sisi cause $G… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.