Kalman Filter from the Mutual Information Perspective
Yarong Luo,
Jianlang Hu,
Chi Guo
Abstract:Kalman filter is a best linear unbiased state estimator. It is also comprehensible from the point view of the Bayesian estimation. However, this note gives a detailed derivation of Kalman filter from the mutual information perspective for the first time. Then we extend this result to the Rényi mutual information. Finally we draw the conclusion that the measurement update of the Kalman filter is the key step to minimize the uncertainty of the state of the dynamical system.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.