In this work, we study a honeycomb lattice with induced superconductivity and edge impurity in order to show the existence of a phase that host Majorana bound state. To do so, we start introducing topological invariants, Chern number and Z 2 , and we show two models for honeycomb lattice. The first, Haldane's Model, due its historical importance. The second, Kane-Mele model[1], because it will be used during all this work. Then we review superconductivity, showing the self-consistent method, and we apply it to Kane-Mele model, in which we find some necessary conditions to induce superconductivity only at the edges. From this point, we study the effect of magnetic impurities at the edges, and we introduce Majorana bound state, that will be the main objective of our results. In our results, we show the existence of topological non-trivial phases for spiral magnetic chain in the zigzag edge. With this we make a phase diagram. We also find oscillation in the energy spectrum and the topological phase changes with the oscillation, this is different from square lattice in which we should not have a change in the topological phase[2]. We conclude this work with experimental implications of our result and possible developments.