Abstract:In this work, tributyltetradecyl-phosphonium chloride (TTPC), has been first introduced to be a novel and efficient cationic surfactant for cationic reverse flotation separation of quartz from magnetite. The first-principles density functional theory calculations, Zeta potential measurements and adsorption isotherm measurements consistently predict that TTPC may be a promising collector that is better than dodecyl triethyl ammonium chloride (DTAC), based on the facts that TTPC and DTAC both prefer to physically adsorb on the quartz surface owing to electrostatic force, but the active part (P + (C 4 H 9 ) 3 ) of TTPC takes much more positive charges than that (N + (CH 3 ) 3 ) of DTAC. The micro-flotation and Bench-scale flotation results further verify that TTPC presents a stronger collecting power and much better selectivity for iron ore reverse flotation in comparison to the conventional collector DTAC. Furthermore, the corresponding adsorption mechanism of TTPC on the quartz have also been investigated in detail. This work might show a good example to discover a potential candidate collector by analogy with a known excellent collector based on reasonable prediction.