In this thesis, the flow coefficients vn of the orders n = 1 − 6 are studied for protons and light nuclei in Au+Au collisions at Ebeam = 1.23 AGeV, equivalent to a center-of-mass energy in the nucleon-nucleon system of √sNN = 2.4 GeV. The detailed multi-differential measurement is performed with the HADES experiment at SIS18/GSI. HADES, with its large acceptance, covering almost full azimuth angle, combined with its high mass-resolution and good particle-identification capability, is well equipped to study the azimuthal flow pattern not only for protons, deuterons, and tritons but also for charged pions, kaons, the φ-mesons, electrons/positrons, as well as light nuclei like helions and alphas. The high statistics of more than seven billion Au-Au collisions recorded in April/May 2012 with HADES enables for the first time the measurement of higher order flow coefficients up to the 6th harmonic. Since the Fourier coefficient of 7th and 8th order are beyond the statistical significance only an upper bound is given. The Au+Au collision system is the largest reaction system with the highest particle multiplicities, which was measured so far with HADES. A dedicated correction method for the flow measurement had to be developed to cope with the reconstruction in-efficiencies due to occupancies of the detector system. The systematical bias of the flow measurement is studied and several sources of uncertainties identified, which mainly arise from the quality selection criteria applied to the analyzed tracks, the correction procedure for reconstruction inefficiencies, the procedures for particle identification (PID) and the effects of an azimuthally non-uniform detector acceptance. The systematic point-to-point uncertainties are determined separately for each particle type (proton, deuteron and triton), the order of the flow harmonics vn, and the centrality class. Further, the validity of the results is inspected in the range of their evaluated systematic uncertainties with several consistency checks. In order to enable meaningful comparisons between experimental observations and predictions of theoretical models, the classification of events should be well defined and in sufficiently narrow intervals of impact parameter. Part of this work included the implementation of the procedure to determine the centrality and orientation of the reaction. In the conclusion the experimental results are discussed, including various scaling properties of the flow harmonics. It is found that the ratio v4/v2 for protons and light nuclei (deuterons and tritons) at midrapidity for all centrality classes approaches values close to 0.5 at high transverse momenta, which was suggested to be indicative for an ideal hydrodynamic behaviour. A remarkable scaling is observed in the pt dependence of v2 (v4) at mid-rapidity of the three hydrogen isotopes, when dividing by their nuclear mass number A (A^2) and pt by A. This is consistent with naive expectations from nucleon coalescence, butraises the question whether this mass ordering can also be explained by a hydrodynamical-inspired approach, like the blast-wave model. The relation of v2 and v4 to the shape of the initial eccentricity of the collision system is studied. It is found that v2 is independent of centrality for all three particle species after dividing it by the averaged second order participant eccentricity v2/⟨ε2⟩. A similar scaling is shown for v4 after division by ⟨ε2⟩^2.