Contrast material-enhanced myocardial perfusion imaging by using cardiac magnetic resonance (MR) imaging has, during the past decade, evolved into an accurate technique for diagnosing coronary artery disease, with excellent prognostic value. Advantages such as high spatial resolution; absence of ionizing radiation; and the ease of routine integration with an assessment of viability, wall motion, and cardiac anatomy are readily recognized. The need for training and technical expertise and the regulatory hurdles, which might prevent vendors from marketing cardiac MR perfusion imaging, may have hampered its progress. The current review considers both the technical developments and the clinical experience with cardiac MR perfusion imaging, which hopefully demonstrates that it has long passed the stage of a research technique. In fact, cardiac MR perfusion imaging is moving beyond traditional indications such as diagnosis of coronary disease to novel applications such as in congenital heart disease, where the imperatives of avoidance of ionizing radiation and achievement of high spatial resolution are of high priority. More wide use of cardiac MR perfusion imaging, and novel applications thereof, are aided by the progress in parallel imaging, high-field-strength cardiac MR imaging, and other technical advances discussed in this review.