Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Immune priming confers a sustained, augmented response of innate immune cells to a secondary challenge, a process that is characteristically reliant on metabolic reprogramming. Recent evidence suggests that histone demethylases play essential roles in the immune priming, while its regulation role in the metabolic reprogramming remains largely unknown. In the present study, the concentration of glucose was significantly down-regulated in the hemocytes of crab Eriocheir sinensis after secondary stimulation with Aeromonas hydrophila, while the expression levels of phosphofructokinase (EsPFK) pyruvate kinase (EsPK), hexokinase-2 (EsHK-2) and Glucose-6-phosphate dehydrogenase (EsG-6-PD), along with the concentrations of lactate and the ratio of NAD+/NADH, were elevated. Additionally, the levels of H3K9me3 and its enrichment at the promoters of EsPFK and EsG-6-PD were significantly decreased at 7 days after A. hydrophila stimulation. The lysine Demethylase 4 homologue (EsKDM4) was observed to translocate into the nucleus of crab hemocytes after A. hydrophila stimulation, and its activity markedly increased after secondary stimulation with A. hydrophila. Following RNA interference of EsKDM4, there was a significant increase in H3K9me3 levels, and the enrichment of H3K9me3 at the EsPFK and EsG-6-PD promoters, as well as the concentration of glucose, in the hemocytes of crabs after secondary stimulation with A. hydrophila. Furthermore, mRNA transcripts of EsPFK and EsG-6-PD, as well as the concentration of lactate and ratio of NAD+/NADH, significantly decreased after secondary stimulation. These results suggested that EsKDM4 mediates the enrichment of H3K9me3 at the promoters of EsPFK and EsG-6-PD, thereby regulating glycolysis during the immune priming of crabs.
Immune priming confers a sustained, augmented response of innate immune cells to a secondary challenge, a process that is characteristically reliant on metabolic reprogramming. Recent evidence suggests that histone demethylases play essential roles in the immune priming, while its regulation role in the metabolic reprogramming remains largely unknown. In the present study, the concentration of glucose was significantly down-regulated in the hemocytes of crab Eriocheir sinensis after secondary stimulation with Aeromonas hydrophila, while the expression levels of phosphofructokinase (EsPFK) pyruvate kinase (EsPK), hexokinase-2 (EsHK-2) and Glucose-6-phosphate dehydrogenase (EsG-6-PD), along with the concentrations of lactate and the ratio of NAD+/NADH, were elevated. Additionally, the levels of H3K9me3 and its enrichment at the promoters of EsPFK and EsG-6-PD were significantly decreased at 7 days after A. hydrophila stimulation. The lysine Demethylase 4 homologue (EsKDM4) was observed to translocate into the nucleus of crab hemocytes after A. hydrophila stimulation, and its activity markedly increased after secondary stimulation with A. hydrophila. Following RNA interference of EsKDM4, there was a significant increase in H3K9me3 levels, and the enrichment of H3K9me3 at the EsPFK and EsG-6-PD promoters, as well as the concentration of glucose, in the hemocytes of crabs after secondary stimulation with A. hydrophila. Furthermore, mRNA transcripts of EsPFK and EsG-6-PD, as well as the concentration of lactate and ratio of NAD+/NADH, significantly decreased after secondary stimulation. These results suggested that EsKDM4 mediates the enrichment of H3K9me3 at the promoters of EsPFK and EsG-6-PD, thereby regulating glycolysis during the immune priming of crabs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.