Potassium 1,1′-dinitroamino-5,5′-bistetrazolate (K2DNABT) is a nitrogen rich (50.3% by weight, K2C2N12O4) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K2DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (b<a<c) from pressure dependent structural properties. The predicted equilibrium bulk modulus reveals that K2DNABT is softer than toxic lead azide and harder than the most sensitive cyanuric triazide. A complete assignment of all the vibrational modes has been made and compared with the available experimental results. The calculated zone center IR and Raman frequencies show a blue-shift which leads to a hardening of the lattice upon compression. In addition, we have also calculated the electronic structure and absorption spectra using recently developed Tran Blaha-modified Becke Johnson potential. It is found that K2DNABT is a direct band gap insulator with a band gap of 3.87 eV and the top of the valence band is mainly dominated by 2p-states of oxygen and nitrogen atoms. K2DNABT exhibits mixed ionic (between potassium and tetrazolate ions) and covalent character within tetrazolate molecule. The presence of ionic bonding suggests that the investigated compound is relatively stable and insensitive than covalent primaries. From the calculated absorption spectra, the material is found to decompose under ultra-violet light irradiation.