2021
DOI: 10.48550/arxiv.2102.02493
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Keep it Simple: Data-efficient Learning for Controlling Complex Systems with Simple Models

Abstract: When manipulating a novel object with complex dynamics, a state representation is not always available, for example for deformable objects. Learning both a representation and dynamics from observations requires large amounts of data. We propose Learned Visual Similarity Predictive Control (LVSPC), a novel method for data-efficient learning to control systems with complex dynamics and high-dimensional state spaces from images. LVSPC leverages a given simple model approximation from which image observations can … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?