Osteoporosis is a common condition worldwide, affecting millions of people. Women are more commonly affected than men, and the risk increases with age. Inflammatory reaction plays a crucial role in the expansion of osteoporosis. Osteoporosis is characterized by a gradual decline in bone density and bone tissue quality, which increases fragility and raises the risk of fractures. We scrutinized the anti‐osteoporosis effect of hydroxysafflor yellow A (HYA) against glucocorticoid‐induced osteoporosis (GIOP) in rats. In‐silico study was carried out on EGFR receptor (PDBID: 1m17), Estrogen Alpha (PDB id: 2IOG), MTOR (PDB id: 4FA6), RANKL (PDB id: 1S55), and VEGFR2 (PDB id: 1YWN) protein. For this investigation, Sprague‐Dawley (SD) rats were used, and they received an oral dose of HYA (5, 10, and 20 mg/kg, b.w.) along with a subcutaneous injection of dexamethasone (0.1 mg/kg/day) to induce osteoporosis. The biomechanical, bone parameters, antioxidant, cytokines, inflammatory, nutrients, hormones, and urine parameters were estimated. HYA treatment significantly suppressed the body weight and altered the organ weight. HYA treatment remarkably suppressed the level of alkaline phosphatase, acid phosphatase, and improved the level of bone mineral density (total, proximal, mild, and dis). HYA treatment restored the level of calcium (Ca), phosphorus (P), estradiol (E2), and parathyroid hormone near to the normal level. HYA treatment remarkably altered the level of biomechanical parameters, antioxidant, cytokines, urine, and inflammatory parameters. HYA treatment altered the level of osteoprotegerin (OPG), receptor activator of nuclear factor kappa beta (RANKL) and RANKL/OPG ratio. The result clearly showed the anti‐osteoporosis effect of HYA against GIOP‐induced osteoporosis in rats via alteration of antioxidant, cytokines, inflammatory, and bone protective parameters.