Abstract:Symbolic data are usually composed of some categorical variables used to represent discrete entities in many real-world applications. Mining of symbolic data is more difficult than numerical data due to the lack of inherent geometric properties of this type of data. In this paper, we use two kinds of kernel learning methods to create a kernel estimation model and a non-linear classification algorithm for symbolic data. By using the kernel smoothing method, we construct a squared-error consistent probability es… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.