Abstract:Kernel adaptive filtering (KAF) algorithms derived from the second moment of error criterion perform very well in nonlinear system identification under assumption of the Gaussian observation noise; however, they inevitably suffer from severe performance degradation in the presence of non-Gaussian impulsive noise and interference. To resolve this dilemma, we propose a novel robust kernel least logarithmic absolute difference (KLLAD) algorithm based on logarithmic error cost function in reproducing kernel Hilber… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.