Maize hybrids with higher vitreousness contain a higher carotenoid content; however, the relationship between the carotenoid profile and the physical and chemical properties related to vitreousness has not been investigated. The aim of this study was to investigate the relationship among the physical properties (kernel size, hardness, density and bulk density), macronutrient composition (crude protein and fat, starch, amylose, amylopectin and zein) and carotenoid profile (individual, total, α- and β-branch carotenoids and xanthophylls) in the grain of 15 maize hybrids. The tested hybrids displayed high variability for most analyzed traits. Three hybrids were characterized by the predominance of β-branch over α-branch carotenoids, while others showed a more uniform content of both fractions. The kernel hardness was associated with the bulk density, flotation index, kernel sphericity, crude protein and zein content. Hybrids with a higher kernel hardness and associated traits had a higher content of zeaxanthin and other β-branch carotenoids, as well as the total carotenoids. In contrast, lutein and α-branch carotenoids were related to the crude protein and amylopectin content only. The findings of the present study confirmed that kernel hardness is associated with β-branch carotenoids and provided further insight into the relationship between the carotenoid profile and commonly analyzed grain quality properties in maize hybrids. The production of higher quality maize hybrids implies a higher nutritional value of the grain due to the higher carotenoid content.