We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport.