Cardiac fibrosis, characterized by excessive extracellular matrix (ECM) deposition within the myocardium, poses a significant challenge in cardiovascular health, contributing to various cardiac pathologies. Ketone bodies (KBs), particularly β-hydroxybutyrate (β-OHB), have emerged as subjects of interest due to their potential cardioprotective effects. However, their specific influence on cardiac fibrosis remains underexplored. This literature review comprehensively examines the relationship between KBs and cardiac fibrosis, elucidating potential mechanisms through which KBs modulate fibrotic pathways. A multifaceted interplay exists between KBs and key mediators of cardiac fibrosis. While some studies indicate a pro-fibrotic role for KBs, others highlight their potential to attenuate fibrosis and cardiac remodeling. Mechanistically, KBs may regulate fibrotic pathways through modulation of cellular components such as cardiac fibroblasts, macrophages, and lymphocytes, as well as extracellular matrix proteins. Furthermore, the impact of KBs on cellular processes implicated in fibrosis, including oxidative stress, chemokine and cytokine expression, caspase activation, and inflammasome signaling are explored. While conflicting findings exist regarding the effects of KBs on these processes, emerging evidence suggests a predominantly beneficial role in mitigating inflammation and oxidative stress associated with fibrotic remodeling. Overall, this review underscores the importance of elucidating the complex interplay between KB metabolism and cardiac fibrosis. Insights gained have the potential to inform novel therapeutic strategies for managing cardiac fibrosis and associated cardiovascular disorders, highlighting the need for further research in this area.