2011
DOI: 10.4304/jcp.6.12.2546-2551
|View full text |Cite
|
Sign up to set email alerts
|

Key exchange based on Dickson polynomials over finite field with 2m

Abstract: <p class="Abstract">Give a survey of the important properties of Dickson polynomial Dn(x,1), and prove that Dickson polynomial&nbsp;&nbsp;Dn(x,1) over finite field with 2m&nbsp;is a permutation polynomial if and only&nbsp;&nbsp;if &nbsp;n is odd. Use this fact to construct a new key agreement protocol which is secure, feasible and extensible.</p>

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
3
0
10

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(13 citation statements)
references
References 14 publications
0
3
0
10
Order By: Relevance
“…Permutation and Dickson polynomials are widely used in mathematics, integer rings (Fernando 2013), finite fields (Bhargava et al 1999), key cryptography (Wei et al 2011), algebraic and number-theory (Stoll 2007). Dickson polynomials are denoted as D n (x, α) and were introduced by Dickson (1896).…”
Section: Introductionmentioning
confidence: 99%
“…Permutation and Dickson polynomials are widely used in mathematics, integer rings (Fernando 2013), finite fields (Bhargava et al 1999), key cryptography (Wei et al 2011), algebraic and number-theory (Stoll 2007). Dickson polynomials are denoted as D n (x, α) and were introduced by Dickson (1896).…”
Section: Introductionmentioning
confidence: 99%
“…, p er−1 (p 2 r − 1) ) = 1. Tal resultado demuestra la falsedad del teorema 2 que se presenta en [28], el cual afirma que D n (x, 1) es un polinomio de permutación módulo 2 m , m ≥ 2 si y sólo si n es impar, como lo muestra el ejemplo 5. Además una consecuencia del teorema 2.12 es que el polinomio de Dickson D n (x, 1) es un polinomio de permutación módulo 2 m , m ≥ 2 si y sólo si n es impar y no es múltiplo de 3, lo que caracteriza a los polinomios de Dickson que son de permutación módulo 2 m .…”
Section: Introductionunclassified
“…También en [28] se afirma que si 1 ≤ n ∈ Z y D n (x, 1) es un polinomio de permutación módulo 2 m , entonces D n+2 (x, 1) es polinomio de permutación módulo 2 m . Por lo dicho en el párrafo anterior D 7 (x, 1) es polinomio de permutación módulo 2 m pero D 9 (x, 1) no lo es, por lo tanto el lema 3.3 del artículo [28] es falso.…”
Section: Introductionunclassified
See 2 more Smart Citations