This study investigates the impact of key factors on the formation of odorants and sensory properties in mead. The effects of the honey type (acacia, buckwheat, linden), wort heating, and the fermentation method (commercial Saccharomyces cerevisiae yeasts, spontaneous fermentation, Galactomyces geotrichum molds) were examined. Twelve model mead batches were produced, matured for 12 months, and analyzed using gas chromatography–olfactometry (GC–O) and headspace SPME-GC/MS to identify odor-active compounds. Results confirmed that the honey type plays a significant role in sensory profiles, with distinct aroma clusters for buckwheat, acacia, and linden honey. Compounds like phenylacetic acid, 2- and 3-methylbutanal, and butanoic acid were identified as the most important odorants, correlating with sensory attributes such as honey-like, malty, and fermented aromas. Univariate and multivariate analyses, followed by correlation analysis, highlighted how production parameters affect mead aroma, providing insights to optimize sensory quality.