In
the development of low-cost, efficient, and environmentally
friendly thin-film solar cells (TFSCs), the search continues for a
suitable inorganic colloidal nanocrystal (NC) ink that can be easily
used in scalable coating/printing processes. In this work, we first
report on the colloidal synthesis of pure wurtzite (WZ) Cu2SnS3 (CTS) NCs using a polyol-mediated hot injection route,
which is a nontoxic synthesis method. The synthesized material exhibits
a random distribution of CTS nanoflakes with an average lateral dimension
of ∼94 ± 15 nm. We also demonstrate that CTS NC ink can
be used to fabricate low-cost and environmentally friendly TFSCs through
an ethanol-based ink process. The annealing of as-deposited CTS films
was performed under different S vapor pressures in a graphite box
(volume; 12.3 cm3), at 580 °C for 10 min using a rapid
thermal annealing (RTA) process. A comparative study on the performances
of the solar cells with CTS absorber layers annealed under different
S vapor pressures was conducted. The device derived from the CTS absorber
annealed at 350 Torr of S vapor pressure showed the best conversion
efficiency 2.77%, which is the first notable efficiency for an CTS
NCs ink-based TFSC. In addition, CTS TFSC’s performance degraded
only slightly after 50 days in air atmosphere and under damp heating
at 90 °C for 50 h, indicating their good stability. These results
confirm that WZ CTS NCs may be very attractive and interesting light-absorbing
materials for fabricating efficient solar-harvesting devices.