In this paper, the concurrent optimal design of a planar five-bar parallel robot for a highspeed pick and place task is considered. A trade-off between trajectory tracking, energy consumption and deformation of the flexible links is sought. Due to the high-speed operation, the minimization of the vibratory effect is considered since the design stage. Thus, the design is stated as a non-linear multiobjective dynamic optimization problem that is solved through the Differential Evolution (DE) algorithm, as well as, feasibility rules for constraints handling. Mechanical structural variables that modify the inertial parameters of the rigid and flexible links, as well as, control variables related to gains of a PID controller are considered as independent variables. This problem is subject to maximum torque that each motor could provide; inherent constraints for link manufacture; dimensional synthesis; Grashof's criterion and initial and boundary conditions. Results show that it is possible, despite the vibrational phenomenon, to reduce the energy consumption without loss of precision through an appropriate mass balance of the actuated links.