Shortening in the Sierra Madre Oriental fold-thrust belt (east central Mexico) is localized along the margins of Cretaceous carbonate platforms and controlled by mechanical stratigraphy. The platform margins are deformed by imbricate series of thrust ramps, whereas the coeval basins and platform interiors are deformed by map-scale detachment folds. Here we present a finite element model to evaluate the influence of the boundary geometry and boundary conditions on the style of deformation observed at these basinward progradational platform margins. We calculate the stress distribution in a linearly elastic platform-basin transition zone under the action of horizontal tectonic stress, taking into account changes of rock mechanical properties across the platform margin, as well as their dependence on direction, and infer the resulting fracture patterns based on the Mohr-Coulomb failure criterion. Stress concentrations are predicted at the contacts between the massive rocks of the platform margin and the well-layered rocks of both, the platform interior and the adjacent basin. Brittle failure of the platform border can be mostly attributed to three effects: mechanical coupling between the carbonate platform and a substratum of moderate to low viscosity, variations in layering and texture that governed the mechanical properties of the involved carbonates as well as their dependence on direction, and the development of sharp domain boundary corners associated with progradational facies changes. In contrast, the dip of the basement and a possible taper of the overlying Upper Cretaceous shale toward the basin appear to have little influence on the mechanical failure of the platform margin.