BackgroundCervical spondylomyelopathy (CSM), also known as wobbler syndrome, affects mainly large and giant-breed dogs, causing compression of the cervical spinal cord and/or nerve roots. Structural and dynamic components seem to play a role in the development of CSM; however, pathogenesis is not yet fully understood. Physiologic and pathologic movements of the cervical spine depend on the morphology and morphometry of articular processes, as well as on intervertebral discs and vertebral column ligaments. Moreover, the characteristics of the articular processes affect motion and stability of the vertebral column. The goal of this study was to investigate the angle, shape, and position of the articular surfaces within the articular processes and compare them between Doberman Pinschers and Great Danes with and without cervical spondylomyelopathy.ResultsMagnetic resonance images were obtained for 60 dogs: 15 clinically normal Dobermans (Dob-N), 15 CSM-affected Dobermans (Dob-CSM), 15 clinically normal Great Danes (GD-N), and 15 CSM-affected Great Danes (GD-CSM). Angle, shape, and position (lateral distance) of the articular surfaces from the articular processes were analyzed from C2–3 to C7-T1. Results indicate that the mean angle was different between Dob-CSM and GD-CSM at C4–5, C5–6, and C6–7, and between GD-N and GD-CSM at C6–7. There were differences between Dob-N and GD-N, and between Dob-CSM and GD-CSM for the lateral distance at most locations, except C2–3. Compared with Great Danes, Dobermans generally had a greater proportion of concave caudal surfaces at C4–5, C5–6, and C6–7. Concave articular surfaces have been associated with greater axial rotation. This may explain the high proportion of disc-associated CSM in Dobermans compared to Great Danes. The differences between breeds suggest they may have different motion patterns in the caudal cervical vertebral column.ConclusionsConsidering that no differences in angle, shape, or position of the articular surfaces within the articular processes were found between normal and CSM-affected dogs, their relevance appears to have a secondary role in the pathogenesis of CSM.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-0997-4) contains supplementary material, which is available to authorized users.