For thermodynamic performance to be optimized, particular attention must be paid to the fluid's thermal pressure coefficients and thermodynamics properties. A new analytical expression based on the statistical mechanics is derived for thermal pressure coefficients of dense fluids using the intermolecular forces theory to be valid for liquid lithium as well. The results are used to predict the parameters of some binary mixtures at different compositions and temperatures metal-nonmetal lithium fluid which agreement with experimental data. In this paper, we have used newly presented parameters of analytical expressions based on the statistical mechanics and predicted the metal-nonmetal transition for liquid lithium. The repulsion term of the effective pair potential for lithium shows well depth at 1600 K, and the position of well depth maximum is in agreement with X-ray diffraction and small-angle X-ray scattering.