SUMMARYMany amphibious organisms undergo repeated aquatic to terrestrial transitions during their lifetime; limbless, elongate organisms that make such transitions must rely on axial-based locomotion in both habitats. How is the same anatomical structure employed to produce an effective behavior across such disparate habitats? Here, we examine an elongate amphibious fish, the ropefish (Erpetoichthys calabaricus), and ask: (1) how do locomotor movements change during the transition between aquatic and terrestrial environments and (2) do distantly related amphibious fishes demonstrate similar modes of terrestrial locomotion? Ropefish were examined moving in four experimental treatments (in which the water level was to lowered mimic the transition between environments) that varied from fully aquatic to fully terrestrial. Kinematic parameters (lateral excursion, wavelength, amplitude and frequency) were calculated for points along the midline of the body and compared across treatments. Terrestrial locomotion in the ropefish is characterized by long, slow, large-amplitude undulations down the length of the body; in contrast, aquatic locomotion is characterized by short-wavelength, small-amplitude, high-frequency undulations that gradually increase in an anterior to posterior direction. Experimental treatments with intermediate water levels were more similar to aquatic locomotion in that they demonstrated an anterior to posterior pattern of increasing lateral excursion and wave amplitude, but were more similar to terrestrial locomotion with regard to wavelength, which did not change in an anterior to posterior direction. Finally, the ropefish and another elongate amphibious fish, the eel, consistently exhibit movements characterized by 'path following' when moving on land, which suggests that elongate fishes exhibit functional convergence during terrestrial locomotion.
Supplementary material available online at