This paper has focused on the formulation of the biological fish propulsion mechanism given by Sir J. Lighthill mathematical slender body theory for a bio-inspired robotic fish. A 2-joint, 3-link multibody vehicle model biologically inspired by a body caudal fin (BCF) carangiform fish propulsion is designed. The objective is to investigate and show that a machine mimicking real fish behavior can navigate efficiently over a given distance with a good balance of speed and maneuverability. The robotic fish model (kinematics and dynamics) is integrated with the Lighthill (LH) mathematical model framework. Different mathematical propulsive waveforms are combined with an inverse kinematics-based approach for generating fish body motion. Comparative studies are undertaken among a non-LH model, a LH model, and the proposed propulsive wave models based on a distance-based performance index. Proposed LH cubic and NURB quadratic functions are found to be 16.32% and 17.94% efficient than a non-LH function, respectively. With the help of the simulation results, closed-loop experiments are done and an operating region is established for critical kinematic parameters tail-beat frequency and propulsive wavelength. The simulation and experimental plots are compared and found to be similar to the kinematic behavior study of the biological yellowfin tuna.