In this research, iron oxide nanoparticles were prepared by green synthesis and identi ed by scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and vibrational magnetometer. The tea leaves extract was used as a reducing agent to synthesize iron oxide nanoparticles. The systematic study of the process was performed using Design Expert 10 software to determine the relationship between the four process variables, namely iron concentration, extract volume, time, and temperature effect. The square model was signi cant for the response variables. The iron oxide nanoparticles had super-magnetic properties. Then, iron oxide nanoparticles were used for magnetization of activated carbon (MAC). Finally, the MAC were used for phenol removing by response surface methodology (RSM) method. The results manifested that the generated MAC is quite effective in removing phenol. Various parameters such as pH, extraction time and adsorbent amount were optimized by the RSM method. The absorption of phenol was measured by using a spectrophotometer at a maximum wavelength of 510 nm. It was also indicated that phenol in an aqueous solution was removed up to 98%.