The ArcB and ArcA proteins constitute a two-component signal transduction system that plays a broad role in transcriptional regulation. Under anoxic or environmentally reducing conditions, the sensor kinase (ArcB) is stimulated to autophosphorylate at the expense of ATP and subsequently transphosphorylates the response regulator (ArcA). ArcB is a complex, membrane-bound protein comprising at least three cytoplasmic domains, an N-terminal transmitter domain with a conserved His292 residue (H1), a central receiver domain with a conserved Asp576 residue (D1), and a C-terminal alternative transmitter domain with a conserved His717 residue (H2). To study the phosphoryl transfer pathways of the Arc system, we prepared the following His-tagged proteins: H1, D1, H2, H1-D1, D1-H2, H1-D1-H2, and ArcA. Incubations of various combinations of Arc proteins with [␥-32 P]ATP indicated that H1, but not D1 or H2, catalyzes autophosphorylation; that H1-P transfers the phosphoryl group to D1 much more rapidly than to ArcA; and that D1 accelerates the transphosphorylation of H2. Finally, ArcA is phosphorylated much more rapidly by H2-P than by H1-P. Available data are consistent with a signal transduction model in which (i) reception of a membrane signal(s) triggers autophosphorylation of H1 at His292, (ii) the phosphoryl group can migrate to D1 at Asp576 and subsequently to H2 at His717, and (iii) ArcA receives the phosphoryl group from either His292 or His717, the relative contribution of which is regulated by cytosolic effectors.