2021
DOI: 10.1063/5.0069971
|View full text |Cite
|
Sign up to set email alerts
|

Kinetic construction of the high-beta anisotropic-pressure equilibrium in the magnetosphere

Abstract: A theoretical model of the high-beta equilibrium of magnetospheric plasmas was constructed by consistently connecting the (anisotropic pressure) Grad-Shafranov equation and the Vlasov equation. The Grad-Shafranov equation was used to determine the axisymmetric magnetic field for a given magnetization current corresponding to a pressure tensor. Given a magnetic field, we determine the distribution function as a specific equilibrium solution of the Vlasov equation, using which we obtain the pressure tensor. We n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 16 publications
0
2
0
Order By: Relevance
“…It remains an open question whether and under what conditions, additional, approximate constants of motion exist within the framework of full-orbit Vlasov description (see [19] and references therein for a discussion on the existence of an approximate third integral of motion in axisymmetric potentials). In certain scenarios, it may be pertinent to consider adiabatic constants, such as the magnetic moment µ as explored in [20]. It is worth noting that in the context of the hybrid model and the present analysis, some assumptions made in [20], such as p ϕ ≈ ψ, can be justified due to the presence of the significant d −2 i factor, especially in systems like the magnetosphere.…”
Section: Axisymmetric Equilibrium Formulationmentioning
confidence: 91%
See 1 more Smart Citation
“…It remains an open question whether and under what conditions, additional, approximate constants of motion exist within the framework of full-orbit Vlasov description (see [19] and references therein for a discussion on the existence of an approximate third integral of motion in axisymmetric potentials). In certain scenarios, it may be pertinent to consider adiabatic constants, such as the magnetic moment µ as explored in [20]. It is worth noting that in the context of the hybrid model and the present analysis, some assumptions made in [20], such as p ϕ ≈ ψ, can be justified due to the presence of the significant d −2 i factor, especially in systems like the magnetosphere.…”
Section: Axisymmetric Equilibrium Formulationmentioning
confidence: 91%
“…In certain scenarios, it may be pertinent to consider adiabatic constants, such as the magnetic moment µ as explored in [20]. It is worth noting that in the context of the hybrid model and the present analysis, some assumptions made in [20], such as p ϕ ≈ ψ, can be justified due to the presence of the significant d −2 i factor, especially in systems like the magnetosphere. However, in this paper, which focuses on laboratory plasmas, we will not adopt this assumption.…”
Section: Axisymmetric Equilibrium Formulationmentioning
confidence: 91%