The in vitro effect of NaCl on NAD‐malate dehydrogenase (E.C. 1.1.1.37; MDH) from desalted extracts of roots and leaves of six salt marsh halophytes was investigated. The plants, all native and important constituents of the salt marshes of the east coast of the U.S., included Spartina alterniflora Loisel., Spartina patens (Aiton) Muhl., Distichlis spicata (L.) Greene, Juncus roemerianus Schleele, Salicornia virginica L., and Borrichia frutescens (L.) DC. In the leaf extracts of all species except Borrichia frutescens, the MDH activity was slightly stimulated by NaCl at concentrations around 0.05 M at optimal pH (8.0–8.5) and was reduced by NaCl in higher concentrations. MDH activity in the leaf extract of Borrichia frutescens was more salt‐tolerant and maximal activity occurred around 0.25 M NaCl at optimal pH (7.0). Even though similar pH optimums for activity were exhibited in the root and leaf extracts of each species, the MDH activity in the root extract was more salt‐tolerant than that in the leaf extract. NaCl at concentrations up to 0.1 M stimulated the MDH activity in the root extracts of all species except that of Borrichia frutescens, which had an optimal activity in 0.5 M NaCl. In the root and leaf extracts of Borrichia frutescens, the activity of cytosol MDH was much more salt‐tolerant than that of the mitochondrial MDH. A shift of the optimal pH to more acidic values with increasing concentrations of NaCl was noted in the extracts of all the species except Borrichia frutescens. The action of NaCl on MDH activity appeared to be a general ionic effect as judged by the response of the enzyme activity in the presence of iso‐ionic concentrations of other salts and isoosmotic mannitol. Thus, the response of the MDH from five of the salt marsh plants to NaCl is similar to that of glycophytes. However, Borrichia frutescens possesses a salt‐tolerant MDH that has optimal activity in a salt concentration as high as that of the environment.