ASP flooding is an important method to further improve oil recovery by a large margin. At present, it has entered the stage of industrial application, but there are still problems of scaling in the injection production system and high production maintenance costs. Based on the industrialized mature technology of weak alkali ASP flooding, sodium chloride is used to replace sodium carbonate, and the alkali-free three-component flooding (TC) system in the Daqing Oilfield is developed by mixing with petroleum sulfonate and partially hydrolyzed polyacrylamide. Based on the experiments of viscosity increasing, interface performance, stability, adsorption, and oil displacement effect, the differences between the alkali-free TC system and the weak alkali ASP system are compared and analyzed. The laboratory research results show that both systems are basically the same in terms of viscosity, viscoelasticity, shear resistance, interfacial activity, stability, and flowability. Due to the lack of alkaline water, the adsorption, emulsification, and oil displacement performance of the alkali-free TC system is slightly lower than that of the weak alkali ASP system. The recovery factor of core flooding can be increased by 27.31% over water flooding, which is 2.56 percentage points lower than that of the weak alkali ASP system. On the premise of the same 1% EOR effect, the agent cost of the alkali-free system is 17.02% lower than that of the alkali ASP system. This article innovatively verifies the feasibility of using NaCl instead of Na 2 CO 3 and explains the mechanism of significantly improving oil recovery in composite systems under alkali-free conditions from the ion level. However, the emulsification effect of the alkali-free TC system is relatively weak. The next step of research would be to consider adding an E-surfactant to enhance the emulsification performance of the composite system. By improving the system composition, technical references are provided for the efficient development of other terrestrial sandstone oilfields.