This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
a b s t r a c tBiosorption of lead (II) ions onto raw biomass of the moss plant Barbula lambarenensis has been studied using the batch equilibrium adsorption method. Equilibrium isotherms, kinetics and thermodynamic parameters have been evaluated. The FT-IR analysis showed that likely functional groups responsible for the adsorption are carboxyl, carbonyl, amides and hydroxyl groups. The pH for optimum adsorption is 5.0. Equilibrium data fit well to the Langmuir isotherm. The estimated maximum adsorption capacity was found to be 62.50 mg/g at 298 K and 90.91 mg/g at 323 K. The kinetic data obeyed the pseudo-second-order model. The free energy changes (DG o ) are positive and the reaction is exothermic with decreased randomness at the sorbent/solution interface. Taking into account its good adsorption capacity, ease of sample treatment, as well as availability, the biomass of B. lambarenensis is a promising cost-effective biosorbent for Pb 2+ removal from aqueous environment.