The digestibility of cellulosic pulps derived by the sulfate process was assessed using commercial multienzyme preparations. Poplar wood pulps of relatively low lignin contents (Kappa numbers of 15.4-24.2), birch, beech and pine wood pulps (Kappa numbers of 25.8-31.4), and wheat straw pulp (Kappa number of 29.5) were efficiently hydrolyzed by a commercial preparation NS-22086 from Novozymes, containing cellulases and xylanases. At around 1.3 % (w/w) substrate concentration, yields of glucose from the poplar pulps were around 80 % on a dry weight (d.w.) basis while for the other four pulps they varied between approximately 70 % (for pine pulp) and 78 % d.w. (for beech and wheat straw pulps). At around 7.4 % (w/w) poplar pulp (Kappa number of 24.2) concentration, glucose yield was around 61 % d.w. The NS-22086 preparation almost completely saccharified fines from a paper mill (around 74 % glucose yields on a dry weight basis) while digestion of poplar chips (particle size of 1.6-2.0 mm) and wheat straw chaff (particle size up to 6 mm) yielded around 5.3 and 14 % d.w. glucose, respectively (total reducing sugars yields of around 16 and 23 % d.w., respectively). These results show that plant biomass may be efficiently converted to glucose-rich hydrolysates by a two-step processing, consisting of kraft pulping followed by treatment with endo-and exo-type cellulases and hemicellulases. Glucose-rich hydrolysates may be also obtained by enzymatic digestion of fines from paper mills.