Mesoporous Ni-Al 2 O 3 (XNiAl) catalysts with different Ni/Al atomic ratio (X) were prepared by a coprecipitation method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of Ni/Al atomic ratio of mesoporous XNiAl catalysts on their physicochemical properties and catalytic activity for steam reforming of LNG was investigated. Physical properties of XNiAl catalysts did not show a consistent trend with respect to Ni/Al atomic ratio, while chemical properties of XNiAl catalysts strongly influenced by Ni/Al atomic ratio. Nickel species were highly dispersed on the surface of XNiAl catalysts through the formation of nickel aluminate phase or solid solution of nickel oxide and nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to Ni/Al atomic ratio. Nickel surface area of XNiAl catalysts was well correlated with LNG conversion and hydrogen composition over the catalysts. Among the catalysts tested, 0.8NiAl (Ni/Al = 0.8) catalyst with the highest nickel surface area showed the best catalytic performance.