The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science.
IntroductionDespite their seemingly low abundances, short-lived trace gases in the atmosphere critically influence global climate change, stratospheric ozone chemistry, and the oxidative capacity of the atmosphere. Because the ocean-atmosphere interface covers a large extent of the Earth's surface, the ocean is a major control on the atmospheric budget of many trace gases. Further, the chemical, biological, and physical processes that occur around this interface have a large impact on trace gas cycling between the oceanic and atmospheric reservoirs.In this chapter we present current knowledge on surface ocean cycling processes, atmospheric reactivity and importance, and the influence of air-sea exchange for a suite of trace gases which generally have shorter atmospheric lifetimes than those discussed in Chap. 3 (i.e. CO 2 , N 2 O and CH 4 ). We focus not only on research from the past 10 years, but also on topics where much uncertainty remains. Unfortunately, not all of the important issues can be addressed here. Notably missing is detailed information about trace gas cycling in polar regions and particularly over-ice processes, including the role of frost flowers.The chemical species discussed in the chapter are intimately related to the topics discussed in Chaps. 2, 4, and 5 of this book. More accurate parameterisations of gas exchange will allow for better calculations of 1 oceanic emissions and uptake (Chap. 2). Many of the gases described, such as sulphur gases and non-methane hydrocarbons, are important for marine boundary layer particle formation and cloud coverage (Chap. 4). And, finally, predictive tools for the impacts of future environmental variability on these gases are required (Chap. 5).In the chapter we have tried to rationalise the use of units wherever possible. However, different units are used by, for example, the atmospheric and ocean communities, the former often using volume units (e.g. ppt by volume), whereas the latter use mass or molar units (both of which are found widely). So, to avoid confusion, we have not tried t...