The kinetics of the Ru(VI)-catalyzed oxidation of benzyl alcohol by hexacyanoferrate(III), in an alkaline medium, has been studied using a spectrophotometric technique. The initial rates method was used for the kinetic analysis. The reaction is first order in [Ru(VI)], while the order changes from one to zero for both hexacyanoferrate(III) and benzyl alcohol upon increasing their concentrations. The rate data suggest a reaction mechanism based on a catalytic cycle in which ruthenate oxidizes the substrate through formation of an intermediate complex. This complex decomposes in a reversible step to produce ruthenium(IV), which is reoxidized by hexacyanoferrate(III) in a slow step. The theoretical rate law obtained is in complete agreement with all the experimental observations.